Early Root Overproduction Not Triggered by Nutrients Decisive for Competitive Success Belowground
نویسندگان
چکیده
BACKGROUND Theory predicts that plant species win competition for a shared resource by more quickly preempting the resource in hotspots and by depleting resource levels to lower concentrations than its competitors. Competition in natural grasslands largely occurs belowground, but information regarding root interactions is limited, as molecular methods quantifying species abundance belowground have only recently become available. PRINCIPAL FINDINGS In monoculture, the grass Festuca rubra had higher root densities and a faster rate of soil nitrate depletion than Plantago lanceolata, projecting the first as a better competitor for nutrients. However, Festuca lost in competition with Plantago. Plantago not only replaced the lower root mass of its competitor, but strongly overproduced roots: with only half of the plants in mixture than in monoculture, Plantago root densities in mixture were similar or higher than those in its monocultures. These responses occurred equally in a nutrient-rich and nutrient-poor soil layer, and commenced immediately at the start of the experiment when root densities were still low and soil nutrient concentrations high. CONCLUSIONS/SIGNIFICANCE Our results suggest that species may achieve competitive superiority for nutrients by root growth stimulation prior to nutrient depletion, induced by the presence of a competitor species, rather than by a better ability to compete for nutrients per se. The root overproduction by which interspecific neighbors are suppressed independent of nutrient acquisition is consistent with predictions from game theory. Our results emphasize that root competition may be driven by other mechanisms than is currently assumed. The long-term consequences of these mechanisms for community dynamics are discussed.
منابع مشابه
Release from belowground enemies and shifts in root traits as interrelated drivers of alien plant invasion success: a hypothesis
Our understanding of the interrelated mechanisms driving plant invasions, such as the interplay between enemy release and resource-acquisition traits, is biased by an aboveground perspective. To address this bias, I hypothesize that plant release from belowground enemies (especially fungal pathogens) will give invasive plant species a fitness advantage in the alien range, via shifts in root tra...
متن کاملPlant Competition Underground
Belowground competition occurs when plants decrease the growth, survival, or fecundity of neighbors by reducing available soil resources. Competition belowground can be stronger and involve many more neighbors than aboveground competition. Physiological ecologists and population or community ecologists have traditionally studied belowground competition from different perspectives. Physiological...
متن کاملSpecifi c impacts of two root herbivores and soil nutrients on plant performance and insect – insect interactions
Soil-dwelling insects commonly co-occur and feed simultaneously on belowground plant parts, yet patterns of damage and consequences for plant and insect performance remain poorly characterized. We tested how two species of root-feeding insects aff ect the performance of a perennial plant and the mass and survival of both conspecifi c and heterospecifi c insects. Because root damage is expected ...
متن کاملPlasticity in above- and belowground resource acquisition traits in response to single and multiple environmental factors in three tree species
Functional trait plasticity is a major component of plant adjustment to environmental stresses. Here, we explore how multiple local environmental gradients in resources required by plants (light, water, and nutrients) and soil disturbance together influence the direction and amplitude of intraspecific changes in leaf and fine root traits that facilitate capture of these resources. We measured p...
متن کاملThe variable eVects of soil nitrogen availability and insect herbivory on aboveground and belowground plant biomass in an old-Weld ecosystem
Nutrient availability and herbivory can regulate primary production in ecosystems, but little is known about how, or whether, they may interact with one another. Here, we investigate how nitrogen availability and insect herbivory interact to alter aboveground and belowground plant community biomass in an old-Weld ecosystem. In 2004, we established 36 experimental plots in which we manipulated s...
متن کامل